

QT Perpendicular lines

1. Write down the equation of a line perpendicular to y = 4x + 6

2. Write down the equation of a line perpendicular to y = 4x + 6 which passes through (0, -4)

3. Find the equation of a line perpendicular to 4y - 2x + 8 = 0

$$4y = 2x - 8$$

$$y = \frac{2}{4}x - \frac{8}{4}$$

$$y = -2x + 4$$

$$y = \frac{2}{4}x - \frac{8}{4}$$

$$y = \frac{1}{4}x - 2$$
aughing

4. Find the equation of a line perpendicular to $y = -\frac{4}{3}x - 6$ which passes through (0, 3)

$$y = \frac{3}{4}x + 3$$

5. Find the equation of a line perpendicular to 2y - 3x + 5 = 0 which passes through (0, -4)

$$y = 3x - 5$$

$$y = \frac{3x - 5}{2}$$

6. Line A passes through the points (4,3) and (8,6). Find the equation of the line perpendicular to line A that passes through (6,12)

7. Line A passes through the points (1,1) and (4,7) Line B passes through the points (7,4) and (11,6) Determine whether Line A and line B are perpendicular.

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac{y + y}{y + y} = \frac{y + y}{y + y}$$

$$\frac$$

Line B passes through the points (-5,-1) and (-1,11)

Line A and B are possible to the points (-4,1) and (k, 5)

Line A and B are possible to the points (-5,-1) and (-1,11) 8. Line A passes through the points (-5,-1) and (-1,11) Line A and B are parallel. payar & icolor. Find the value of k.

Find the value of k.

We A =
$$\frac{JL-J1}{XL-X1}$$

= $\frac{JI-J1}{XL-X1}$

= $\frac{JI-J1}{XL-X1}$

= $\frac{JI-J1}{XL-X1}$

- $\frac{J}{J}=\frac{J-J1}{XL-J1}$

- $\frac{J}{J}=\frac{J-J1}{J}=\frac$